DIMOSTRAZIONE Curve ortottiche: caso della ellisse
Sia data lellisse di semiassi a e b, fuochi F1
ed F2
(F1F2=2c) e cerchio direttore γ (centro in F1
e raggio 2a). AB e CD sono due corde perpendicolari passanti per F2
. Gli assi dei segmenti F2A, F2B, F2C e F2D sono tangenti allellisse (proprietà del
cerchio direttore
). I vertici del rettangolo PQRT, circoscritto allellisse, cadono nei punti medi dei lati del quadrilatero ABCD e le diagonali del rettangolo si intersecano nel centro O dellellisse (per ragioni di simmetria). Si ha: . Condotti da F1
i segmenti di perpendicolare F1H=d1
e F1K=d2
rispettivamente ad AB e CD si ha:
. Ma: d1
2+d2
2=F1F2
2=4c2
da cui: QT2=8a2-4c2⇒QO2=2a2-c2=a2+b2=cost. I vertici dei rettangoli circoscritti alla ellisse (punti di intersezione di due tangenti perpendicolari) appartengono sempre alla circonferenza di centro O e raggio
(ortottica).